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A one-center self-consistent field (SCF) wavefunction for two electrons, built from a m-term mole-
cular orbital, is multiplied by the correlation factor 1+ ar,,. All integrals required for a variational
treatment are obtained from previous papers in this series. Application to the ground state of equilateral
triangular HY shows that the energy improvement due to the correlation factor and the optimized
value of « increase as m increases. Joshis[4] SCF-functions were used. For m =9 our best energy is
—1.3037 a.u. for «=0.189, compared with Joshi’s energy of —1.28028 a.u.,, at Ryy=1.607 a.u.

Eine Ein-Zentrum-Wellenfunktion fir zwei Elektronen vom SCF-Typ wird mit dem Korrelations-
faktor 1+ ar,, multipliziert. Alle Integrale, die filir eine Variationsrechnung benétigt werden, kénnen
aus frijheren Ergebnissen hergeleitet werden. Eine Anwendung auf den Grundzustand von Hj mit der
Struktur des gleichseitigen Dreieckes zeigt, daB sowohl die Energieverbesserung als auch die optimalen
Werte von o mit m zunehmen, wobei m die Zahl der Terme in dem MO darstellt. Joshis [4] SCF-Funk-
tionen bilden die Grundlage. Fiir m =9 erhielten wir die Energie —1,3037 a.E. und o =0,189. Joshis
Energie war —1,28028 a.E. (R = 1,607 a.E.).

Une fonction d’onde SCF monocentrique pour deux électrons, construite & partir d’'une orbitale
moléculaire & m termes, est multipliée par le facteur de corrélation 1+ ar,,. Toutes les intégrales
nécessaires pour un traitement variationnel sont obtenues & partir des articles précédents de cette
série. L’application & I'état fondamental de HJ (triangle équilatéral) montre que amélioration de
I’énergie diie au facteur de corrélation ainsi que la valeur optimale de « augmente lorsque m augmente.
On a utilisé les fonctions SCF de Joshi [4]. Pour m= 9, notre meilleure énergie est — 1,3037 u. a., pour
o= 0,189, alors que Joshi obtient — 1,28028 u. a. & Ry;; = 0,928 u. a.

1. Introduction

In papers I and 1T of this series [ 2, 3] (hereafter referred to as I and II, respect-
ively) we presented all the integrals in closed form which are required for a con-
figuration-interaction (CI) wavefunction, built from general exponential-type
orbitals, associated with the correlation factor 1+ ar,,. Since a Cl-wavefunction
can lead, in principle, to the exact energy, the efficiency of the correlation factor
is decreasing with an increasing number of terms.

Self-consistent field molecular orbitals (SCF-MOj are usually expanded in
terms of m atomic orbitals. As m increases, the SCF-wavefunctions improve. Since
such wavefunctions do not account for the correlation between electrons, the
lowering of the energy obtained by multiplying SCF-functions by a correlation
factor is not expected to decrease as m increases.

Similar calculations were performed for two-electron atoms by Roothaan and
Weiss [8], for H, by Kolos and Roothaan [ 5], and for HY by Lester and Krauss [7].

In Part 2 the theory developed in papers I and II will be reviewed for the
special case of a SCF-wavefunction. In Part 3, the method will be applied to one-
center SCF-functions of equilateral triangular HY, obtained by Joshi [4].
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2. Wavefunction and Integrals

We assume that a one-center SCF-wavefunction P° with the SCF-MO ¢ is
available for the two-electron molecule under consideration. The correlated
wavefunction P* will then be written as

Po(ry, 1) = (14 aryy) POry, ro) = (1 +ary,) olry) @(rs), (1)
Wlth m
o)=Y ay@r), 2
i=1

and real «. The spin part has been separated out, and will not be mentioned further.
%; is generally of the form

xilr) = Z ¢i(pi, mo) di(;, m) rPie™ ™" Yl,-m‘-(‘g: ®). 3
Pisnisli,my
In the following the summation indices and arguments of ¢; and d; will be omitted.
By substitution one obtains

Y1, 2) = (1 +aryy) Y a,a,%(1) 1(2)

=1 +aryy) Y, a,0,4, (1) %(2) @)
szt
= (1 + OCrl 2) Z asat¢gt(1a 2) = Z asat(pst(lb 2)
szt s2t
with
Pa(l,2) = A, (M %),
D,(1,2) = (L +ary,) 83(1,2), Q)
and
B5(1,2)= A, Y ceddpterie srimnrny,  (1)Y,,, (2). 6)

A is a symmetrization operator. @J is equivalent to @) of papers I and II. The
double notation is necessary for the identification of this function. The coordinates
(r;), and also (9;, ¢;) were written as (i).

The correlated SCF-functions will be treated in the same way as the correlated
Cl-functions of papers I and 11, with the only difference that the coefficients a,a,
will remain fixed and not be subjected to optimization.

The energy E% obtained by the variation method, is

E*= ([ Y*H ¥*dv, dv,/{| ¥*" ¥*dv, dv, .

All integrals which may occur in this expression have been discussed in papers [
and II. E° is the energy resulting from P°.

3. Application to Equilateral Triangular H}

Joshi’s [4] one-center SCF-calculations of equilateral triangular HY formed
the basis of our correlation work. This molecule was also the subject of paper 1.
The geometric center of the molecule was chosen to be the origin of the co-
ordinate system. V; and all integrals V, ;; are then zero. The coordinate system was
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rotated so that the polar axis pointed towards one of the protons. Joshi studied
molecular orbitals which consisted of 1 to 18 basis functions. We were interested
in the improvement of the energy and in the optimized value of « as a function of
m, the number of terms in an SCF-MO. We used Joshi’s 1 to 9-term functions,
omitting m = 6 and 8. The results are given in Table 1. E® is Joshi’s energy, E* the
energy obtained by using the correlated wavefunction ¥* E* has been minimized
with respect to «, but not with respect to the orbital exponents #; and the linear
coefficients a;. They are Joshi’s values, and therefore not reproduced in Table 1.
AE is defined as E° — E°.

Table 1. Ground state energies (in au.) of equilateral triangular H}

m Ryy (an) a —E° —E* AE AE/E® [%]
1 1.599 0.049 1.02604 1.02900 0.003 0.3
2 1.554 0.102 1.10994 1.11959 0.0096 0.9
3 1.554 0.175 1.16629 1.18730 0.0211 1.8
4 1.550 0.180 1.16722 1.18834 0.0211 1.8
5 1.568 0.185 1.22391 1.2465 0.0226 1.8
7 1.602 0.188 1.27389 1.2973 0.0234 1.8
9 1.607 0.189 1.28028 1.3037 0.0234 1.8

Contrary to a Cl-wavefunction, 4E and « increase with increasing number
of terms. This is understandable, since, as Joshi points out, the maximum in the
orbital density curves becomes sharper as m increases, and no correlation is
introduced by the SCF-wavefunction. Since AE seems to approach a saturation
value, we expect E* for Joshi’s 18-term MO to be about —1.310 a.u.

Schwartz and Schaad [9] estimate the correlation energy of H} to be —0.043
to —0.048 a.u., whereas Kutzelnigg et al. [6] calculate a correlation energy of
—0.039 a.u. Accordingly, our improvement AE = 0.0234 a.u. for m =9 represents
50—-60% of the correlation energy. We did not intend to optimize ¥* with respect
to the linear coefficients a; and the orbital exponents #;, in order to preserve the
SCF-character of the uncorrelated wavefunctions. However, it is to be expected
that such optimization would have further improved our results.

Some percentage lowerings of two-electron probability densities form =1to 4
are given in Table 2. A¥? is defined by

AP = POy r)— U2 (p,, 1),

Ry 1s the distance between the geometric center of the molecule and one of the
protons.

Table 2. Percentage lowerings of two-electron probability densities

m AP?/P°% [%] AP?/P0? [%]
ry=r;=Rog, ¥1,=0 ry=r13=Rou/2, 7;=Roy

1 18 15

2 31 25

3 43 34

4 44 35
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The Hatree-Fock energy of equilateral triangular Hj is about —1.30 a.u. [9].
Joshi’s lowest energy was — 1.28626 a.u. Probably he would have needed orbitals
of higher angular momentum quantum numbers to obtain a lower energy.

Minimization of E* with respect to # and Ryy for m = 1 gave E* = —1.0369 a.u.
at Ryy=1.609 a.u., with n=1.1146 and o = 0.245.

Calculations with a cutoff correlation factor for this molecule using Joshi’s
orbitals with m =1 to 4 have been performed, and will be published soon.

For all details on the theory and computations we refer to Ref. [1].

Acknowledgments. We acknowledge financial support by the National Research Council of
Canada and the University of New Brunswick. The computing centers at McGill University and the
Universities of New Brunswick and Toronto granted computer time and gave valuable assistance.

References

. Chang, T.-C.: Master’s Thesis, University of New Brunswick 1968.

Grein, F., and M. H. Hawton: J. chem. Physics 46, 4121 (1967).

. —,and T.-J. Tseng: Theoret. chim. Acta (Berl.) 12,57 (1968).

. Joshi, B. D.: J. chem. Physics 44, 3627 (1966).

Kolos, W., and C. C. J. Roothaan: Rev. mod. Physics 32, 205 (1960).

. Kutzelnigg, W., R. Ahirichs, 1. Labib-Iskander, and W. A. Bingel: Chem. Physics Letters 1, 447
(1967).

. Lester, W. A., and M. Krauss: J. chem. Physics 44, 207 (1966).

. Roothaan, C.C.J.,and A. W. Weiss: Rev. mod. Physics 32, 194 (1960).

9. Schwartz, M.E.,and L. J. Schaad: J. chem. Physics 47, 5325 (1967).

o0 =1

Professor Friedrich Grein
Quantum Chemistry Group, University of Uppsala
Box 518, 75120 Uppsala 1/Sweden



